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Abstract

An adaptive mesh projection method for the time-dependent incompressible Euler equations is presented. The

domain is spatially discretised using quad/octrees and a multilevel Poisson solver is used to obtain the pressure.

Complex solid boundaries are represented using a volume-of-fluid approach. Second-order convergence in space and

time is demonstrated on regular, statically and dynamically refined grids. The quad/octree discretisation proves to be

very flexible and allows accurate and efficient tracking of flow features. The source code of the method implementation

is freely available.
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1. Introduction

Efficient techniques for the numerical simulation of low Mach number flows have a large range of

applications: from fundamental fluid mechanics studies such as turbulence or interfacial flows, to engi-

neering and environmental problems. For time-dependent flows, the finite speed of propagation of sound
waves can lead to strong restrictions on the maximum value of the timestep. While filtering techniques can

be applied to try to lift this constraint, a better approach is to assume that the fluid considered is strictly

incompressible. This introduces an elliptic problem for the pressure which expresses the instantaneous

propagation of pressure information throughout the entire domain. In practice, this leads to the funda-

mental change from a spatially explicit to a spatially implicit problem.
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Projection methods and multigrid solvers have proved an efficient combination to solve this type of

problem [1–4]. More recently, these techniques have been extended through the use of higher-order, un-

conditionally stable advection schemes [5,6].

Another characteristic of fluid flows is the very wide range of spatial scales often encountered: shocks in

compressible flows, interfaces between immiscible liquids, turbulence intermittency, boundary layers and

vorticity generation near solid boundaries are just a few examples. Consequently, in recent years a number

of researchers have investigated the use of adaptive mesh refinement, where the spatial discretisation is

adjusted to follow the scale and temporal evolution of flow structures [7–9].
For compressible flows, two main approaches have been developed: the hierarchical structured grid

approach of Berger and Oliger (adaptive mesh refinement, AMR) [7] and quad/octree-based discretisations

[8,10]. The AMR framework uses classical algorithms on regular Cartesian grids of different resolutions

arranged hierarchically. The only modification necessary is to allow coupling between grids at different

levels through the boundary conditions. Quad/octree discretisations, on the other hand, deal with various

levels of refinement locally through the use of finite-difference operators adapted to work at fine/coarse cell

boundaries.

The AMR framework has been extended to incompressible flows by Minion [11], Almgren et al. [12] and
Howell and Bell [9] but we are not aware of any quad/octree implementation of adaptive mesh refinement

for incompressible flows. The natural hierarchical nature of tree-based discretisations is well suited for

multigrid implementations. Moreover, we believe that the flexibility and simplicity of mesh refinement and

coarsening of quad/octrees can be a significant advantage when dealing with complex solid boundaries or

evolving interfacial flows.

Complex solid boundaries are usually represented using boundary-following structured curvilinear grids

or unstructured grids. While boundary conditions can be easily and accurately applied on such grids, grid

generation can be a difficult and time consuming process. In recent years, ‘‘Cartesian grids’’ [13–17] and
‘‘immersed boundary’’ [18–20] techniques have known a regain of interest because they greatly simplify the

grid generation process. This flexibility comes at the cost of a more complex treatment of boundary con-

ditions at solid boundaries.

In this light, we present a numerical method for solving the incompressible Euler equations, combining a

quad/octree discretisation, a projection method and a multilevel Poisson solver. Advection terms are dis-

cretised using the robust second-order upwind scheme of Bell et al. [5] and complex solid boundaries are

treated through a Cartesian volume-of-fluid approach. On a uniform grid without solid boundaries, the

approach presented reduces to the approximate projection method described by Martin (cf. [21,22]). Solid
boundaries are treated using a combination of a Poisson solver similar to the one studied by Johansen and

Colella (cf. [23,24]) and of a cell-merging technique for the advection scheme [14]. In contrast to classical

AMR strategies, adaptive refinement is performed at the fractional timestep.

While we restrict this description to two-dimensional flows for clarity, the extension to three dimensions

is straightforward: the source code of the three-dimensional parallel implementation [25] can be freely

accessed, redistributed and modified under the terms of the Free Software Foundation General Public

License.
2. Spatial discretisation

The domain is spatially discretised using square (cubic in 3D) finite volumes organised hierarchically as a

quadtree (octree in 3D) [26]. This type of discretisation has been used and studied extensively for image

processing and computer graphics applications [27,26] and more recently applied to the solution of the

Euler equations for compressible flows [8,10]. An example of spatial discretisation and the corresponding

tree representation is given in Fig. 1. In what follows we will refer to each finite volume as a cell. The length



Fig. 1. Example of quadtree discretisation and corresponding tree representation.
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of a cell edge is denoted by h. Each cell may be the parent of up to four children (eight in 3D). The root cell is

the base of the tree and a leaf cell is a cell without any child. The level of a cell is defined by starting from

zero for the root cell and by adding one every time a group of four descendant children is added. Each cell

C has a direct neighbour at the same level in each direction d (four in 2D, six in 3D), noted Nd . Each of

these neighbours is accessed through a face of the cell, noted Cd . In order to handle embedded solid

boundaries, we also define mixed cells which are cut by a solid boundary.
To simplify the calculations required at the cell boundaries, we add the constraints illustrated in Fig. 2:

(a) the levels of direct neighbouring cells cannot differ by more than one;.

(b) the levels of diagonally neighbouring cells can not differ by more than one;

(c) all the cells directly neighbouring a mixed cell must be at the same level.

While not fundamentally necessary, these constraints greatly simplify the gradient and flux calculations

presented in this article. Constraints (a) and (b) have little impact on the flexibility of the discretisation (they

only impose gradual refinement by increments of two). Constraint (c) is more restrictive as it forces all the

cells cut by the interface to be at the same level (i.e. the whole solid boundary must be described at the same
resolution). It is also important to note that a major restriction of the quad/octree structure is that it

imposes a locally spatially isotropic refinement. This can be an issue in highly non-isotropic flows (i.e.,

boundary layers, large scale atmospheric flows, etc.). A limited solution is to use a rectangle instead of a

square as root cell, thus resulting in a fixed refinement ratio between the corresponding spatial directions. A

more general (and complicated) approach would be to use the ‘‘variable quadtree’’ approach of Berger and

Aftosmis [28].

In practice, the choice of a data structure to represent the tree is conditioned by the following re-

quirements:
(a) for any given cell, efficient access to neighbouring cells;

(b) for any given cell, efficient access to cell level and spatial coordinates;
Fig. 2. Additional constraints on the quadtree discretisation. The refinement necessary to conform to the given constraint is indicated

by the dotted lines.
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(c) efficient traversal of:
• all leaf cells,

• all cells at a given level,

• all mixed cells.

At present, we use the fully threaded tree structure presented by Khokhlov [10] which allows (a) and (b) to

be performed in Oð1Þ operations (versus OðlogNÞ for a standard pointer-based structure). Operations (c)

are performed in OðN logNÞ using the standard pointer-based tree description (N is the number of cells

traversed). Other modern quad/octree representations might be as good or better (in particular, the linear

quadtree encoding of Balmelli et al. [29] is noteworthy).

The primitive variables of the Euler equations (velocity U and pressure p) are all defined at the centre of

the cells. In mixed cells, the solid boundary is defined through a volume-of-fluid type approach. Specifically,

we define:
• the volume fraction a as the ratio of the volume occupied by the fluid to the total volume of the

cell;

• the surface fraction in direction d, sd as the ratio of the area of face Cd occupied by the fluid to the total

area of the face.

This solid boundary description assumes that the geometries represented do not possess features with

spatial scales smaller than the mesh size. In particular, sharp angles or thin bodies cannot be represented

correctly. This can be an issue for some applications, but more importantly, as argued by Day et al. [24], it

will restrict the efficiency of the multigrid solver.
Computing the volume and area fractions can be expressed in terms of boolean operations (intersection,

union, difference) between curves (in 2D) or volumes (in 3D). This is a difficult problem to solve in a robust

manner (due to the limited precision of arithmetic operations in computers). Because of their numerous

practical applications, robust geometrical operations have attracted considerable attention from the

computational geometry community in recent years [30–33]. Drawing from these results, we use the boolean

operations implemented in the GTS Library [34] based on an approach similar to that presented by

Aftosmis et al. [35].
3. Temporal discretisation

We consider a constant density, incompressible and inviscid fluid. Given a velocity field

Uðx; y; tÞ ¼ ðuðx; y; tÞ; vðx; y; tÞÞ;

and a pressure field p ¼ pðx; y; tÞ defined at location ðx; yÞ and time t, on some domain X with a solid wall

boundary oX, the incompressible Euler evolution equations for U are

Ut ¼ �uUx � vUy �rp;
r �U ¼ 0:

The boundary condition for the velocity at solid wall boundaries is the no-flow condition

Uðx; y; tÞ � n ¼ 0 for ðx; yÞ 2 oX;

where n is the outward unit vector on oX.
We use a classical fractional-step projection method [1,2,36]. At any given timestep n, we assume that the

velocity at time n, Un and the fractional step pressure pn�1=2 are known at cell centres. In a first step, a

provisional value UHH is computed using
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UHH �Un

Dt
¼ �Anþ1=2; ð1Þ

where Anþ1=2 is an approximation to the advection term ½ðU � rÞU�nþ1=2. The new velocity Unþ1 is then

computed by applying an approximate projection operator to UHH which also yields the fractional step

pressure pnþ1=2.
4. Poisson equation

The projection method relies on the Hodge decomposition of the velocity field as

UHH ¼ Uþr/; ð2Þ

where

r �U ¼ 0 in X and U � n ¼ 0 on oX: ð3Þ

Taking the divergence of (2) yields the Poisson equation

r2/ ¼ r �UHH; ð4Þ

while the normal component of (3) yields the boundary condition

o/
on
¼ UHH � n on oX:

The divergence-free velocity field is then defined as

U ¼ UHH �r/;

where / is obtained as the solution of the Poisson problem (4). This defines the projection of the velocity

UHH onto the space of divergence-free velocity fields.
In the context of the approximate projection method we are using here the discrete formulation of the

projection operator will depend on where the velocity field is discretised relative to the pressure field. We

will use both an exact projection for face-centred advection velocities and an approximate projection for the

final projection of the cell-centred velocities. The detail of these two projections does not influence the

general description of the Poisson solver.

4.1. Relaxation operator

In practice, the spatially discretised Poisson problem results in a linear system of equations with the

pressure at cell centres as unknowns

Lð/Þ ¼ r �UHH; ð5Þ

where L is a discretisation of the Laplacian. This system can be solved through iterative methods (Jacobi,

Gauss–Seidel) using a relaxation operator.

If we consider a discretisation cell C of boundary oC, using the divergence theorem, the integration of (4)

yieldsZ
oC

r/ � n ¼
Z
C

r �UHH; ð6Þ
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where n is the outward unit normal of oC. In the case of a cubic discretisation cell, the discrete equivalent of

(6) can be written asX
d

sdrd/ ¼ har �UHH; ð7Þ

where d is the direction, sd the surface fraction in direction d and a the fluid volume fraction of the cell.

Johansen and Colella [23] have shown that this discretisation is second-order accurate if the right-hand side

is defined at the geometric centre of the partial cell and the gradient at the geometric centre of the partial

faces. Expressing the gradient at the geometric centre of the partial face requires interpolation of the full-

face-centered gradients. While this is relatively simple on a regular Cartesian grid, this is more difficult

within the adaptive framework we are using. Consequently we have chosen to use the full-face-centered
gradient even in mixed cells. The following description thus applies to both full and mixed cells.

To construct the relaxation operator, we assume that the face gradient can be expressed as a linear

function of the pressure at the centre of the cell

rd/ ¼ ad/þ bd ;

where the a are constants and the b are linear functions of the values of the pressure in the adjacent dis-

cretisation cells.

In practice, three cases must be considered for the construction of the gradient operator (Fig. 3). If the

neighbour of the cell in direction d, Nd is at the same level and is a leaf cell, the gradient is simply
rd/ ¼ ð/d � /Þ=h, where /d is the value of / at the centre of Nd . Using the notation above: ad ¼ �1=h
and bd ¼ /d=h.

Fig. 4 illustrates the case where Nd is at a lower level (case 3(b)). In order to maintain the second-order

accuracy of the gradient calculation, it is necessary to use a three-point interpolation procedure. The

gradient rd/ is computed by fitting a parabola through points /6, / and either /7 or
b//d . By construction,cNNd is at the same level as C. If cNNd is a leaf cell, rd/ can be expressed as

hrd/ ¼ �
/
3
�

b//d

5
þ 8

15
/6; ð8Þ

where the value of the pressure at the centre of cNNd , b//d has been used. If cNNd is not a leaf cell, an inter-

polated value for the pressure /7 is constructed by averaging the values of its children closest to C (indi-

cated by s in Fig. 4). The gradient is then given by

hrd/ ¼ �
2

9
/� 8

27
/7 þ

14

27
/6: ð9Þ

The pressure /6 must itself be interpolated from /d and from the values in the neighbouring cells in di-

rections perpendicular to d. Due to the corner refinement constraint (Fig. 2(b)), these cells (cNN?d and N?d)
Fig. 3. Three cases for face-centered gradient calculation: (a) cells at the same level; (b) fine-coarse boundary; (c) coarse-fine boundary.



Fig. 4. Second-order interpolation used for the gradient calculation at fine/coarse cell boundaries.
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are guaranteed to be at the same level as Nd . The values /3 and /4 are derived using the same averaging

procedure if cNN?d and N?d are not leaf cells. This leads to the following four cases:

/6 ¼

15
16
/d � 3

32
b//?d þ 5

32
/?d if cNN?d and N?d are leaf cells;

5
6
/d � 1

14
b//?d þ 5

21
/3 if cNN?d is a leaf cell;

/d � 1
7
/4 þ 1

7
/?d if N?d is a leaf cell;

8
9
/d � 1

9
/4 þ 2

9
/3 otherwise

8>>><
>>>: ð10Þ

The gradientrd/ can still be expressed as a linear function of /. The corresponding values of ad and bd can

be calculated by using (8)–(10).
In the third case, Nd is at the same level but is not a leaf cell (Fig. 3(c)). The gradient is simply con-

structed as minus the average of the gradients constructed from the children cells of Nd closest to C
(indicated by s in Fig. 3(c)). These gradients are in turn computed using the interpolation technique de-

scribed above (case 3(b)). This approach ensures that the pressure gradient fluxes across coarse/fine

boundaries are consistent. The extension to three dimensions is straightforward.

Once the a and b coefficients have been computed for each cell face of the domain, using (7) a relaxation

operator can be defined as

Rð/;r �UHHÞ : / har �UHH �
P

d sdbdP
d sdad

: ð11Þ

In the case where all the cells are on the same level and there are no solid boundaries (regular Cartesian

grid), the operator reduces to the classical stencil
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Rð/;r �UHHÞ : / 
P

d /d � h2r �UHH

n
;

where n is the number of directions (4 in 2D, 6 in 3D).

This operator, together with the interpolation procedure described above, has several desirable prop-

erties. It is second-order accurate in space at coarse/fine cell boundaries and uses a consistent flux esti-

mation. In the case of cells cut by solid boundaries, the flux calculation is only first-order accurate in space,

however.

4.2. Boundary conditions

Cells on the boundary of the domain or mixed cells may not have neighbours in all directions. If values

for the pressure /d are required in one of these directions, either by the gradient operator rd/ or by the
interpolation formula (10), they are set as equal to / (the pressure at the centre of the cell considered). For

cells entirely contained within the fluid, this is equivalent to a classical second-order accurate implemen-

tation of Neumann boundary conditions for the pressure.

4.3. Multilevel acceleration

The point relaxation defined byR can be accelerated using a multigrid technique [3,4]. When using quad/

octrees, different choices are possible for the construction of the multilevel hierarchy. We have chosen to

define a multilevel Ml of depth l as the set of cells C which satisfy either of the conditions:

• level of C is equal to l;
• C is a leaf cell of level smaller than l.
An example of such a hierarchy is given in Fig. 5. This is probably not the best possible hierarchy for
multigrid acceleration, in the sense that not all cells get coarser when moving from one level to the next. It is

relatively easy to manually generate a possibly better hierarchy such as illustrated in Fig. 6. However, the

systematic generation of such optimised hierarchies involves a set of rules substantially more complicated

than the two conditions given above. In practice, if the simple rules are used, the traversal of the cells

belonging to Ml is straightforward to implement when using a pointer-based quad/octree structure.

Using this multilevel hierarchy, we apply a classical multigrid ‘‘V-cycle’’ using the correction form of the

linear system (5)
Fig. 5. Example of simple multilevel hierarchy.



Fig. 6. Example of optimised multilevel hierarchy.
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Lð/þ d/Þ ¼ r �UHH () Lðd/Þ ¼ R with R ¼ r �UHH �Lð/Þ:

The residual R is first computed on all the cells of the deepest level ML as

RL ¼ r �UHH � 1

ha

X
d

sdrd/:

The residual is then transferred recursively on all the coarser levels as a volume weighted average

Rl ¼
P

i ah
2Rlþ1P

i ah
2

;

where
P

i designates the summation over all the children of the cell considered. The value of the pressure

correction d/ is then computed exactly on the coarsest level. This value is used as the initial guess on the

next finer level. Straight injection is used i.e. the initial guess d/ in each cell ofMl is set as the value of d/ in

its parent cell. The relaxation operator R is then applied a few times (using Jacobi iterations) and the

resulting solution is used as initial guess on the next finer level. This is repeated recursively down to level L
where the resulting correction is applied to /. The whole V-cycle is repeated until the residual on the finest

level is suitably small. This algorithm can be summarised as:

Compute RL on ML

while kaRLk1 > �
for l ¼ L� 1 to 0

Compute Rl using weighted average of Rlþ1
end for

Apply relaxation operator Rðd/;R0Þ to M0 down to convergence
for l ¼ 1 to L

Get initial guess for d/ in cells at level l using straight injection from level l� 1

Apply r times relaxations Rðd/;RlÞ to Ml

end for

Correct / on ML using d/
Compute RL on ML

end while
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It is important to note that, when applied to level Ml, the relaxation operator should not use any cell of

level larger than l (on which the solution for d/ is not yet defined). More specifically, when computing the

gradient operator as described in the previous section, all the cells at level l must be considered as leaf cells

even if they have children at level lþ 1.

This multigrid algorithm also differs from a classical implementation where a pre-relaxation is applied

before transferring the residual onto the coarser level [3]. In a classical multigrid the solution computed at

each level is thus a correction to the correction at a deeper level. Such a scheme is difficult to implement on

the multilevel quadtree hierarchy illustrated in Figs. 5 and 6 because, depending on the way the refined
patches are laid out, it would require the storage of multiple corrections for the cells used as boundary

conditions for refined patches. The scheme we propose solves this problem by dealing on all levels only with

the correction to the pressure on the finest level. Of course, the convergence rate of such a ‘‘half’’ V-cycle is

less than the convergence rate of the classical version, but tests have shown that the increased speed of such

a simplified V-cycle more than compensate for the decrease in convergence rate.

In the following, we generally stop the V-cycle iterations when the maximum volume-weighted residual

kaRLk1 is smaller than 10�3 and we apply r ¼ 4 iterations of the relaxation operator at each level.

4.4. Numerical validation

We are interested in two main properties of the multilevel Poisson solver: the speed of convergence for

each V-cycle iteration and the spatial order of the method as the grid is refined. Given the way the re-
laxation operator is constructed, the method is expected to be globally second-order accurate on both

regular and refined grids. If solid boundaries are used, the method should be first-order accurate near the

solid boundaries and second-order accurate elsewhere.

We define the volume-weighted norm of a variable e as

kaekp ¼
P

i jeij
paih2P

i aih
2

; ð12Þ

where
P

i designates the summation over all the leaf cells of the domain. An 1-norm, kaek1, is the

maximum over all the leaf cells of the absolute value of e. Knowing two solutions defined on domains of

maximum refinement L1 and L2, the rate of convergence in a given norm p can be estimated as

Op ¼
log

ke1kp
ke2kp

� �
ðL2 � L1Þ log 2

: ð13Þ

The convergence rate, Op ¼ n, indicates nth-order accuracy, i.e., the leading term in the truncation error

scales as OðhnÞ.
A first test illustrates convergence on a regular Cartesian grid for a smooth pressure solution. We

consider a square domain of size unity centred on the origin, with Neumann boundary conditions on all

sides. The divergence is set in each cell as

r �UHHðx; yÞ ¼ �p2ðk2 þ l2Þ sinðpkxÞ sinðplyÞ ð14Þ

with k ¼ l ¼ 3. The exact solution of the Poisson equation with this source term is

/ðx; yÞ ¼ sinðpkxÞ sinðplyÞ þ j; ð15Þ

where j is an arbitrary constant. The initial guess for the pressure is a constant field. Seven levels of re-

finement are used which results in a Cartesian discretisation of 27 � 27 ¼ 128� 128. We apply 10 iterations

of the V-cycle with r ¼ 4 iterations of the relaxation operator at each level. Fig. 7 illustrates the evolution of



Fig. 7. Speed of convergence of the Poisson solver for a simple problem, L ¼ 7: (a) evolution of the residual; (b) reduction factor.
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the maximum norm of the residual. A reduction factor (ratio of the residuals before and after the V-cycle)

of about 25 per V-cycle is obtained.
To estimate the order of the solver, we solved the same problem on regular grids of increasing resolution.

For each grid size, the norm of the error on the solution is calculated using the computed solution and the

exact solution given by (15), where j is taken as the average value of the computed pressure over the entire

domain. Fig. 8 illustrates the evolution of the error as a function of the depth of refinement L (i.e., a regular

Cartesian grid of size 2L � 2L). The order of convergence is computed as indicated above. As expected for

this simple problem, the method shows second-order convergence in all norms.

For the moment, only the classical stencil on regular meshes has been used. In order to test the accuracy

of the gradient operator in the case of coarse/fine mesh boundaries, we use the following test. A domain is
first discretised with L� 2 levels of refinement. Two more levels are then added only in the cells contained

within a circle centred on the origin and of radius 1/4. The resulting discretisation for L ¼ 6 is illustrated in

Fig. 9. The same simple problem is then solved on this mesh. Fig. 10 gives the convergence rate of the

residual for a mesh with L ¼ 7. The residual reduction factor is about 15 per V-cycle. The order of the

solver for the same problem is illustrated in Fig. 11. Close to second-order convergence in all norms is
Fig. 8. Order of convergence of the Poisson solver for a simple problem: (a) evolution of the error and (b) order of convergence as

functions of resolution.



Fig. 9. Mesh used for evaluation of the coarse/fine gradient operators, L ¼ 6.

Fig. 10. Speed of convergence of the Poisson solver for a simple problem discretised using a mesh similar to Fig. 9 with L ¼ 7: (a)

evolution of the residual; (b) reduction factor.

Fig. 11. Order of convergence of the Poisson solver for a simple problem discretised using a mesh similar to Fig. 9: (a) evolution of the

error and (b) order of convergence as functions of resolution.
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obtained which confirms that the gradient operator described previously is second-order accurate at coarse/

fine mesh boundaries.

In order to test the ability of the method in presence of solid boundaries, we set up a series of tests with a

variety of solid geometries. The corresponding solutions of the Poisson equation are illustrated in Fig. 12.

All problems use the source term defined by (14) where x and y are the coordinates of the geometric centre

of the cell considered [23] . A circular solid boundary centred on the origin and of radius 1/4 is used for (a).

A star-shaped solid boundary defined in polar coordinates as

rðhÞ ¼ 0:237þ 0:079 cosð6hÞ

is used in problem (b) and an ellipse centred on the origin measuring 3
4
� 5

8
in problem (c). All problems use

Neumann conditions on all boundaries. Fig. 13 illustrates the convergence speed for the three problems

with L ¼ 7 levels of refinement. The ‘‘star’’ problem (b) is notably more difficult to solve with an average

reduction factor of only five per V-cycle. This is due to the limitation of the volume-of-fluid representation

of the solid boundaries. As mentioned earlier, the features of the solid boundaries are only represented

accurately if their spatial scale is comparable to the mesh size. For the ‘‘star’’ problem, while the geometry is

represented correctly on the finest level, it is not well represented on all the coarser levels used by the

multigrid procedure. Cases (a) and (b) do not have this problem because the smallest spatial scales of the
solid boundaries (circle and ellipse) are comparable to the domain size.

The evolution of the error with resolution and the associated convergence order is given in Fig. 14. As

the exact solution of the problem is not known analytically, Richardson extrapolation is used. That is, the

error for a given level of refinement L is computed by taking the solution at level Lþ 1 as reference.
Fig. 12. Contour plots of the solution of Poisson problems with solid boundaries.

Fig. 13. Residual reduction factor for Poisson problems with solid boundaries, L ¼ 7.



Fig. 14. Evolution of the error and associated convergence order for Poisson problems with solid boundaries.
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A combination of solid boundaries and refinement is tested using a discretisation with L� 2 levels of

refinement on the whole domain plus two levels added only in cells cut by the solid boundary (a discret-

isation example is given in Fig. 15 for problem 12(b) and L ¼ 6). Figs. 16 and 17 illustrate the convergence

speed and the order of the method using this discretisation.

The convergence is close to second-order (asymptotically in L) for all norms in all cases. The second-

order convergence of the maximum error kaek1 is surprising as the discretisation of the pressure gradient
Fig. 15. Boundary-refined mesh for problem 12(b), L ¼ 6.



Fig. 17. Evolution of the error and associated convergence order for Poisson problems with refined solid boundaries.

Fig. 16. Residual reduction factor for Poisson problems with refined solid boundaries, L ¼ 7.
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fluxes is only first-order accurate near solid boundaries (as described in Section 4). This first-order error in

the pressure gradient fluxes should lead to an Oð1Þ truncation error of the Laplacian operator. Johansen

and Colella [23] have demonstrated that a scheme with an Oð1Þ truncation error will lead to an OðhÞ error
on the solution for the pressure, in contradiction to the Oðh2Þ convergence we obtain here.

To try to clarify this issue we present truncation and solution errors for the test case used in [23,24]. The
embedded boundary is defined by the curve

rðhÞ ¼ 0:30þ 0:15 cos 6h:

The divergence is set in each full cell as

r �UHHðr; hÞ ¼ 7r2 cos 3h:

The exaction solution for this system is /ðr; hÞ ¼ r4 cos 3h. A mesh similar to Fig. 15 is used, with two levels
of refinement added near the embedded boundary. In mixed cells, in order to be able to use Neumann

boundary conditions at the solid surface while retaining the exact solution, the flux of the gradient of the

exact solution through the boundary is subtracted from the divergence, giving
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r �UHHðr; hÞ ¼ 7r2 cos 3h� sðnxrx/þ nyry/Þ
ah

;

where s is the length of the embedded boundary contained within the cell, nx and ny are the components of
the outward-pointing unit normal to the solid boundary. The gradients of the exact solution are defined as

rx/ ¼
4x4 � 3x2y2 � 3y4

r
; ð16Þ
ry/ ¼
xyð5x2 þ 9y2Þ

r
; ð17Þ

where x and y are the coordinates of the center of mass of the piece of embedded boundary contained within

the cell.
The results are summarized in Fig. 18. Fig. 18(a) gives the error norms and corresponding orders of

convergence of the computed solution as functions of the level of refinement L. Fig. 18(b) illustrates the

volume-weighted truncation error of the numerical Laplacian L defined in Section 4.1. As expected the

max-norm of the truncation error of the numerical Laplacian is Oð1Þ due to the OðhÞ error in the pressure

gradient fluxes in mixed cells, while the orders of the 1- and 2-norm are close to one and one-half, re-

spectively. However, while one would expect only first-order convergence of the max-norm of the error on

the solution, second-order convergence in all norms is obtained as illustrated in Fig. 18(a). This confirms
Fig. 18. Evolution of the error and associated convergence order for the Neumann Poisson problem of [23,24] using locally refined

solid boundaries: (a) error on the solution; (b) volume-weighted truncation error on the Laplacian of the exact solution.



Fig. 19. Average residual reduction factor for problem 12(a) as a function of resolution L.
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the results obtained for the previous tests and implies that second-order convergence in all norms can be

obtained for practical problems even if the truncation error on the Laplacian is Oð1Þ. The discrepancy

between our results and the theoretical study of Johansen and Colella could be explained if second-order

converging errors in the bulk of the flow were always larger than first-order converging errors in mixed cells

for all the tests we performed. This seems unlikely but if this were the case, it would be necessary to find

more stringent test cases than used in this study or in [23,24]. Further work in this direction would be

useful.

Finally, Fig. 19 shows how the solver scales with problem size. Problem 12(a) was solved on successively
finer grids and the average residual reduction factor was computed as

kaR0k1
kaRnk1

� �1=n

;

where Ri is the residual after i V-cycle have been applied and n is the total number of V-cycles (10 in this

test). The residual reduction factor decreases approximately linearly with resolution level L. The compu-

tational cost of solving a problem with 22L ¼ N 2 degrees of freedom (in 2D) thus scales as OðN 2 logNÞ as
expected from a multigrid scheme.
5. Advection term

We use a conservative formulation for the evaluation of the advection term. Given a cell C of boundary

oC, using the divergence theorem and the non-divergence of the velocity field, the finite-volume advection

term Anþ1=2 of (1) can be computed asZ
C

Anþ1=2 ¼
Z
C

½ðU � rÞU�nþ1=2 ¼
Z
C

r � UUð Þ½ �nþ1=2 ¼
Z
oC

Unþ1=2ðUnþ1=2 � nÞ;

where n is the outward unit normal of oC. In the case of our cubic discretisation cell this can be written

ahAnþ1=2 ¼
X
d

sdU
nþ1=2
d unþ1=2d ; ð18Þ
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where U
nþ1=2
d is the velocity at the centre of the face in direction d at time nþ 1=2 and unþ1=2d is the normal

component of the velocity at the centre of the face in direction d at time nþ 1=2. In order to compute these

time- and face-centred values, we use a Godunov procedure [5], i.e., the leading terms of a Taylor series of

the velocity of the form

U
nþ1=2
d ¼ Un þ h

2
odU

n þ Dt
2
otU

n þ Oðh2;Dt2Þ;

where od designates the spatial derivative in direction d. Using the Euler equations, the temporal derivative

can be replaced by spatial derivatives yielding

U
nþ1=2
d ¼ Un þ h

2

�
� Dt

2
vnd

�
odU

n � Dt
2
vn?do?dU

n � Dt
2
rpn;

where ? d is the direction perpendicular to d in 2D (in 3D the sum over the two perpendicular directions)

and vd is the velocity component in direction d at the centre of the cell. Given a cell face, two values of

U
nþ1=2
d can be constructed, one for each cell sharing this face. In the original Godunov method for com-

pressible fluids an unique value is constructed from these two values by solving a Riemann problem. In the

incompressible case, simple upwinding is sufficient [5].
Following [21,22] we use a simplified upwind scheme of the form

eUUnþ1=2
d ðCÞ ¼ Un þ h

2
min 1

�
� vnd

Dt
h
; 1

�
odU

n � Dt
2
vn?do?dU

n; ð19Þ

where o?dU
n is the upwinded derivative in direction ? d

o?dU
n ¼

r?dUn if vn?d < 0;
r b?d?dUn if vn?d > 0;

�
ð20Þ

r?d is computed as in Section 4.1 and d?d?d is the direction opposite to ?d. The cell-centred derivative odU
n

is computed by fitting a parabola through the centre of C and of its neighbours in directions d and bdd . If the
neighbours are on different levels, an interpolation or averaging procedure similar to that presented in

Section 4.1 is used. In the case of neighbouring cells at the same level, this procedure reduces to the classical

second-order accurate centred difference scheme. We also do not use any slope limiters on the derivatives as
we do not expect strong discontinuities in the velocity field for incompressible flows. Slope limiters can

easily be added in this scheme if necessary.

Given the time- and face-centred values eUUnþ1=2
d ðCÞ and eUUnþ1=2bdd ðNdÞ we then choose the upwind state

U
nþ1=2
d ðCÞ ¼ U

nþ1=2bdd ðNdÞ ¼

eUUnþ1=2
d ðCÞ if und > 0;eUUnþ1=2bdd ðNdÞ if und < 0;

1
2
ðeUUnþ1=2

d ðCÞ þ eUUnþ1=2bdd ðNdÞÞ if und ¼ 0;

8>><
>>: ð21Þ

where Nd is the neighbour of C in direction d. If Nd is at a lower level (Fig. 20) and und 6 0, the value

upwinded from Nd at the centre of the face (marked by s) is interpolated linearly from eUUnþ1=2bdd ðNdÞ and
from the value for its neighbour (or its children) in the correct direction, eUUnþ1=2bdd ðN?dÞ.

In order to compute the advection term using (18), we first need to construct the face- and time-centred

normal velocities unþ1=2d . If we want the method to be conservative, these normal velocities have to be

discretely divergence-free. In a first step, normal velocities are constructed for both sides of each cell face

using (19) and (20) where vnd and vn?d are the corresponding components of the centred velocity Un. The

upwind state uHd is then selected for each face using (21) where und is obtained by linear interpolation of the



Fig. 20. Upwinding in the case of neighbouring cells at different levels. Linear interpolation is used to derive the value on the right side

of Cd .
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relevant component of the centred velocities UnðCÞ and UnðNdÞ. To make this set of normal velocities

divergence-free we then apply a projection step by solving

Lð/Þ ¼ r � uH; ð22Þ

where r � uH is the finite-volume divergence of the normal velocity field, expressed for each cell as

r � uH ¼ 1

ah

X
d

sduHd : ð23Þ

By correcting uH with the pressure solution, we obtain a set of face- and time-centred normal velocities

unþ1=2d ¼ uHd �rd/: ð24Þ

When correcting the normal velocities, we also calculate a cell-centred value for the pressure gradient by

simple averaging of face gradients

rH

d / ¼
rd/�rd̂d/

2
: ð25Þ

To compute the advection term Anþ1=2, we first need to re-predict the face-centred velocities U
nþ1=2
d , this time

using unþ1=2d rather than averages from cell-centred values. Again, in a first step, normal velocities are

constructed for both sides of each cell face using (19) and (20) where we now take vnd ¼ ðu
nþ1=2
d � unþ1=2

d̂d
Þ=2.

A unique value UH

d is then selected for each face using (21). A face-centred pressure gradient err/ is then

computed by linear interpolation from the average cell-centred values rH/ðCÞ and rH/ðNdÞ (or its

children). The predicted value is then obtained as

U
nþ1=2
d ¼ UH

d � err/:
Note that we could re-use the face- and time-centred normal velocities unþ1=2d as predicted values (the
tangential component would still need to be recalculated), however, we have found this approach to be

unstable for flow around sharp angles. The spatial filtering of the pressure gradient provided by the av-

eraging procedure seems to be necessary to ensure stability in this particular case.
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5.1. Small-cell problem

To obtain the provisional cell-centred velocity field UHH using (1), it is necessary to divide the finite-

volume advection term (18) by the volume of the cell (ah2) to get Anþ1=2. This leads to the classical CFL

stability condition

kUkDt
ah

6 1;

which expresses the condition that a cell should not ‘‘overflow’’ during a given timestep. In the general case,

the fluid fraction a can be arbitrarily small with a corresponding restrictive condition on the maximum

timestep. This is traditionally referred to as the ‘‘small-cell problem’’. A number of approaches exist to

work around this problem: cell merging [14,37], redistribution [15] or special difference schemes [13]. We
have chosen to use a simple cell-merging technique similar to that presented by Quirk [14]. At initialisation

time, after the volume and area fractions have been computed, all small cells are assigned a pointer to their

biggest neighbour B (as measured by the fluid fraction a). For a given timestep, the advection term

ah2Anþ1=2 is then computed in all cells as described above. To compute the advection update to the velocity,

small cells are first grouped with adjacent mixed or full cells using the following recursive algorithm:

Group (G, C)
if C does not already belong to any group then

Add C to G
if C is a small cell then

Group (G, BðCÞ)
end if

for each direction d
if Nd is a small cell then

Group (G, Nd)

end if

end for
end if

where G is the resulting group of cells. For each group, the weighted averaged update is computed as

A
nþ1=2
G ¼

P
G ah

2Anþ1=2P
G ah

2
:

Each cell in the group then receives a fraction of the update proportional to its volume

Anþ1=2 � ah2P
G ah

2
A

nþ1=2
G :

This is equivalent to using a ‘‘virtual’’ cell formed by all the cells in the group. The CFL stability now

depends on the total volume of the group of cells. In practice, choosing to define small cells as cells for
which a < 1=2 ensured stability in all the cases we tested.
6. Approximate projection

While it is easy to formulate an exact projection operator for MAC (staggered, face-based) discretisation

of the velocity field, it is difficult to do the same for a cell-centred discretisation. This is due to the spatial

decoupling of the stencils used for the relaxation operator. This can cause numerical instabilities in the
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pressure field and makes efficient implementation of multigrid techniques difficult [38,9]. Attempts to couple

neighbouring pressure cells through asymmetric operators have been unsuccessful [39].

Drawing from these conclusions, Almgren et al. [12] dropped the requirement of exact discrete non-di-

vergence of the projected cell-centred velocity field and proposed to use an approximate Laplacian operator

well-behaved with respect to spatial coupling. Following Lai [38], Minion [11] and Martin [21] we use an

approximate projection based on face-centred interpolation of the cell-centred velocity field. In a first step,

face-centred normal components of the velocity are constructed by interpolation of the cell-centred provi-

sional velocity UHH. This normal (MAC) velocity field is then projected using the exact projection operator
(following steps (22) to (24)) and average cell-centred pressure gradients are constructed (using (25)). These

pressure gradients are thenused to correctUHH to obtain the approximately divergence-free velocity fieldUnþ1.

A detailed study of the stability of the approximate projection can be found in [40,41]. The use of

pressure filters was found to be necessary in some cases (long, quasi-stationary simulations) to avoid a

gradual build-up of non-divergence-free velocity modes. We do not use pressure filters in the current

version of the code but did not encounter any noticeable numerical instabilities for the various tests we

performed.

It is also important to note that even if the resulting cell-centred velocity field is not exactly divergence-
free, the face-centred normal advection field unþ1=2d is exactly discretely divergence-free, so that the advection

scheme is exactly conservative. This is particularly important for the treatment of variable density flows.
7. Adaptive mesh refinement

Using a tree-based discretisation, it is relatively simple to implement a fully flexible adaptive refinement

strategy.
In a first step, all the leaf cells which satisfy a given criterion are refined (as well as their neighbours when

necessary, in order to respect the constraints described in Fig. 2). This step could be repeated recursively but

we generally assume that the flow is evolving slowly (compared to the frequency of adaptation) so that only

one pass is necessary.

In a second step, we consider the parent cells of all the leaf cells (i.e., the immediately coarser discret-

isation). All of these cells which do not satisfy the refinement criterion are coarsened (i.e., become leaf cells).

The values of the cell-centred variables for newly created or coarsened cells must be initialised. For newly

coarsened cells, it is consistent to compute these values as the volume weighted average of the values of their
(defunct) children, so that quantities such as momentum are preserved exactly. For newly created cells, the

solution is less obvious. In particular, it is desirable that momentum and vorticity are locally preserved.

Unfortunately, this is not simple to achieve in practice. We have chosen a simple linear interpolation

procedure using the parent cell value and its gradients. Given a newly created cell C with parent cell P, the

new cell-centred value vðCÞ is obtained as

vðCÞ ¼ vðPÞ þ DxrxvðPÞ þ DyryvðPÞ;

where ðDx;DyÞ are the coordinates of the centre of C relative to the centre of P. This formula guarantees

local conservation of momentum but tends to introduce numerical noise in the vorticity field. A better

choice may be higher-order interpolants such as bicubic interpolation.

On the new discretisation, there is no guarantee that the velocity field is divergence-free anymore. A
projection step is then needed. To avoid the cost of an extra projection step when adapting the grid, we

perform the grid refinement at the fractional timestep, using the provisional velocity field UHH, just before

the approximate projection is applied.

Various choices are possible for the refinement criterion. An attractive option would be to use Rich-

ardson extrapolation to obtain a numerical approximation of the truncation error of the whole scheme
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[42,21]. For the moment, we use a simple criterion based on the norm of the local vorticity vector. Spe-

cifically, a cell is refined whenever

hkr �Uk
max kUk > s;

where max kUk is evaluated over the entire domain. The threshold value s can be interpreted as the

maximum acceptable angular deviation (caused by the local vorticity) of a particle travelling at speed

max kUk across the cell.

The computational cost of this algorithm is small compared to the cost of the Poisson solver. It can be

applied at every timestep with a negligible overall penalty (less than 5% of the total cost).
8. Numerical results

Following Minion [11] and Almgren et al. [43], we present two convergence tests illustrating the second-

order accuracy of our method for flows without solid boundaries. The first problem uses a square unit

domain with periodic boundary conditions in both directions. The initial conditions are taken as

uðx; yÞ ¼ 1� 2 cosð2pxÞ sinð2pyÞ;
vðx; yÞ ¼ 1þ 2 sinð2pxÞ cosð2pyÞ:
The exact solution of the Euler equations for these initial conditions is

uðx; y; tÞ ¼ 1� 2 cosð2pðx� tÞÞ sinð2pðy � tÞÞ;
vðx; y; tÞ ¼ 1þ 2 sinð2pðx� tÞÞ cosð2pðy � tÞÞ;
pðx; y; tÞ ¼ � cosð4pðx� tÞÞ � cosð4pðy � tÞÞ:
As in [43] nine runs are performed on grids with L ¼ 5; 6 and 7 levels of refinement (labelled ‘‘uniform’’) and

with one (labelled r ¼ 1) or two (labelled r ¼ 2) additional levels added only within the square defined by

the points ð�0:25;�0:25Þ and ð0; 0Þ. The length of the run for each case is 0.5, the CFL number is 0.75. For

each run both the L2 and L1 norms of the error in the x-component of the velocity is computed using (12)

for both the whole domain (labelled ‘‘domain’’) and the refined region only (labelled ‘‘patch’’). Table 1 gives
the errors and order of convergence obtained.

Close to second-order convergence is obtained (asymptotically in L) for the L2 and L1 norms on both

uniform and refined domains. The values obtained are comparable to that in [11,43]. The error in the
Table 1

Errors and convergence orders in the x-component of the velocity for a simple periodic problem

L2 L1

L ¼ 5 O2 L ¼ 6 O2 L ¼ 7 L ¼ 5 O1 L ¼ 6 O1 L ¼ 7

Patch

r ¼ 1 6.80e) 3 2.19 1.49e) 3 2.05 3.61e) 4 1.73e) 2 1.82 4.89e) 3 1.91 1.30e) 3

r ¼ 2 4.91e) 3 1.66 1.55e) 3 1.81 4.39e) 4 1.58e) 2 1.41 5.96e) 3 1.84 1.66e) 3

Domain

Uniform 7.70e) 3 2.87 1.05e) 3 2.65 1.67e) 4 1.74e) 2 2.62 2.84e) 3 2.68 4.44e) 4

r ¼ 1 9.52e) 3 2.39 1.81e) 3 2.17 4.01e) 4 2.27e) 2 2.14 5.15e) 3 1.93 1.35e) 3

r ¼ 2 1.22e) 2 2.19 2.67e) 3 2.09 6.29e) 4 2.76e) 2 2.21 5.96e) 3 1.84 1.66e) 3
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refined patch is comparable to the error at the resolution of the base grid. This is expected, given the ar-

bitrary placement of the refined patch, the error is controlled mainly by the surrounding coarse cells.

The second test is the four-way vortex merging problem of Almgren et al. [43]. It demonstrates the

convergence of the method when refinement is placed appropriately.

Four vortices are placed in the unit-square, centred at ð0; 0Þ, ð0:09; 0Þ, ð�0:045; 0:045
ffiffiffi
3
p
Þ and

ð�0:045;�0:045
ffiffiffi
3
p
Þ and of strengths )150, 50, 50, 50, respectively. The profile of each vortex centred

around ðxi; yiÞ is
Fig. 21. Contour plots of vorticity (left) and adaptive grids used (right) for the four-way vortex merging calculation. The lines on the

pictures in the right column represent the boundaries between levels of refinement (with a maximum of L ¼ 8 levels).
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1þ tanhð100ð0:03� riÞÞ
2

;

where ri ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xiÞ2 þ ðy � yiÞ2

q
. To initialise the velocity field, we use this vorticity as the source term in

the Poisson equation for the streamfunction w

r2w ¼ kr �Uk:

Each component of the velocity field is then calculated from the streamfunction. No-flow boundary con-

ditions are used on the four sides of the domain and the simulations are ran to t ¼ 0:25 using a CFL of 0.9.

Five different discretisations are used, each time with up to L levels of refinement: a uniform grid, a grid

using static refinement in concentric circles of decreasing radius and the dynamic adaptive refinement

described in Section 7. The ‘‘circle’’ grid is constructed by starting from a uniform grid with four levels of
refinement and by successively adding one level to all the cells contained within circles centred on the origin

and of radii:

• L ¼ 6: 0.25, 0.15;

• L ¼ 7: 0.25, 0.2, 0.15;

• L ¼ 8: 0.25, 0.2, 0.175, 0.15;

• L ¼ 9: 0.25, 0.2, 0.175, 0.1625, 0.15;

• L ¼ 10: 0.25, 0.225, 0.2, 0.175, 0.1625, 0.15.

For the dynamically refined grid, the vorticity-based criterion is applied at every timestep with a threshold
s ¼ 4� 10�3. As we do not have an analytical solution for this problem, Richardson extrapolation is used.

Fig. 21 illustrates the evolution of the vorticity and of the adaptively refined grid for L ¼ 8. The most

refined level closely follows the three outer vortices as they orbit the central one. Far from the vortices, a

very coarse mesh is used (l ¼ 3). One may note a few isolated patches of refinement scattered at the pe-

riphery of the outer vortices. They are due to the numerical noise added to the vorticity by the interpolation

procedure necessary to fill in velocity values for newly created cells. As mentioned in Section 7, this could be

improved by using higher-order interpolants. This numerical noise is small enough that it does not com-

promise the convergence properties of the adaptive method (as shown below).
Table 2 summarises the results obtained for the first 12 calculations. For fine enough grids close to

second-order convergence is obtained for both norms and for the three discretisations used. The norms of

the error on the various grids are also comparable for a given resolution.

Table 3 gives the CPU time and the size of the problems solved for all three grids and for two levels of

refinement. A PC-compatible Pentium 350 MHz machine was used. The total number of leaf cells advanced
Table 2

Errors and convergence orders in the x-component of the velocity for the four-way vortex merging problem

Domain L2

L ¼ 6 O2 L ¼ 7 O2 L ¼ 8 O2 L ¼ 9

Uniform 2.61e) 2 1.31 1.05e) 2 1.97 2.68e) 3 2.11 6.19e) 4

Circle 2.61e) 2 1.33 1.04e) 2 1.96 2.68e) 3 1.98 6.81e) 4

Adaptive 2.66e) 2 1.35 1.04e) 2 2.07 2.47e) 3 2.05 5.96e) 4

Domain L1

L ¼ 6 O1 L ¼ 7 O1 L ¼ 8 O1 L ¼ 9

Uniform 4.46e) 1 1.25 1.87e) 1 1.95 4.84e) 2 1.85 1.34e) 2

Circle 4.49e) 1 1.27 1.86e) 1 1.94 4.85e) 2 1.87 1.33e) 2

Adaptive 4.45e) 1 1.26 1.86e) 1 1.94 4.86e) 2 1.83 1.37e) 2



Table 3

Timings for uniform, circle and adaptive grids for the four-way vortex merging problem

CPU Time Cells advanced

Total (s) ls/cell Number

Uniform, L ¼ 8 1486 167 8,912,896

Circle, L ¼ 8 166 222 746,368

Adaptive, L ¼ 8 117 286 409,632

Uniform, L ¼ 9 13,034 166 78,643,200

Circle, L ¼ 9 1024 183 5,608,960

Adaptive, L ¼ 9 764 326 2,342,200

Table 4

Errors and convergence rates for the x-component of the velocity

All cells Full level 5 cells

5–6 Rate 6–7 5–6 Rate 6–7

L1 2.66e) 4 1.81 7.60e) 5 2.41e) 4 1.85 6.69e) 5

L2 5.83e) 4 1.44 2.15e) 4 5.36e) 4 1.49 1.91e) 4

L1 5.05e) 3 0.89 2.72e) 3 3.77e) 3 0.93 1.98e) 3
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for the whole calculation is given as well as the corresponding average speed. For L ¼ 8, a speedup of about

nine is obtained when using the statically refined ‘‘circle’’ grid, and 13 when using the adaptive technique.

Both the ‘‘circle’’ and adaptive discretisations are notably slower (per cell) than the uniform discretisation.

This is mainly due to the interpolations necessary to compute the pressure gradient at coarse/fine cell
boundaries when solving the Poisson equation (Fig. 4). It is also interesting to note that the CPU times
Table 5

Errors and convergence rates for the y-component of the velocity

All cells Full level 5 cells

5–6 Rate 6–7 5–6 Rate 6–7

L1 2.75e) 4 1.95 7.11e) 5 2.31e) 4 2.16 5.17e) 5

L2 7.09e) 4 1.32 2.84e) 4 6.76e) 4 1.59 2.25e) 4

L1 7.47e) 3 1.05 3.60e) 3 5.98e) 3 1.07 2.85e) 3

Fig. 22. Contour plot of the error on the x-component of the velocity estimated for a solution with L ¼ 6 levels of refinement.



Fig. 23. Airflow around RV Tangaroa. The stream ribbons and cross-section at sea level are coloured according to the norm of the

velocity.

Fig. 24. Adaptive mesh. The horizontal and vertical cross-sections illustrate the three-dimensional adaptive octree.

S. Popinet / Journal of Computational Physics 190 (2003) 572–600 597



598 S. Popinet / Journal of Computational Physics 190 (2003) 572–600
obtained are very close to those reported by Almgren et al. [43] for the same problem (keeping in mind that

they used a Cartesian AMR technique on a DEC Alpha computer and solved a viscous flow).

To demonstrate the convergence properties of the method in the presence of solid boundaries, we use a

test case initially presented by Almgren et al. [15]. A diverging channel is constructed in a 4� 1 domain by

restricting the fluid flow through the curves ytop and ybot, defined as

ybot ¼
y1 if 06 x6 1;
y2 þ 0:5ðy1 � y2Þð1þ cosðp

2
ðx� 1ÞÞ if 1 < x < 3;

y2 if 36 x6 4

8<
:

and

ytop ¼ 1� ybot;

with y1 ¼ 0:2 and y2 ¼ 10�6. Neumann boundary conditions for the pressure are set at the inlet (x ¼ 0) and
at the solid boundaries. A fixed unity inflow velocity is set at the inlet and simple outflow boundary

conditions at the outlet (the pressure and the gradients of all the components of the velocity are set to zero

at x ¼ 4). The simulations are ran to t ¼ 1 using a CFL of 0.8. Three simulations are performed on uniform

grids with L ¼ 5; 6 and 7 levels of refinement. Tables 4 and 5 show the errors and convergence rates ob-

tained. As in [15] we calculate errors both on the full domain (‘‘All cells’’) and on the part of the domain

covered by cells at level 5 entirely contained within the fluid (‘‘Full level 5 cells’’). Columns labelled ‘‘5–6’’

give the error computed on the mesh with 5 levels of refinement using the mesh with 6 levels of refinement as

reference (and similarly for columns labelled ‘‘6–7’’). For both components of the velocity close to first-
order convergence is obtained for the L1 norm and close to second-order convergence for the L1 norm, as

expected from a solution globally second-order accurate but first-order accurate at the boundaries. Fig. 22

confirms that the error is concentrated near solid boundaries. The maximum error in either component is

small (less than one percent of the magnitude of the velocity).

Finally, we present an application of the three-dimensional version of the code to a practical engineering-

type problem. The air flow around the vessel RV Tangaroa of the National Institute of Water and At-

mospheric Research has been simulated by solving the 3D time-dependent incompressible Euler equations

around a CAD model. Fig. 23 is a snapshot in time of the developed turbulent flow. Wind is coming at a
right angle from the right of the vessel. The stream ribbons and cross-section at sea level are coloured

according to the norm of the velocity. The spatial resolution is about 50 cm near the ship and is adapted

dynamically (using the vorticity criterion) down to a minimum scale of one meter elsewhere in the flow. The

resulting mesh is composed of about 350,000 leaf cells in established regime. Fig. 24 shows a vertical and

horizontal cross-sections through the adapted octree mesh for the same timestep. We are in the process of

comparing these results to experimental measurements, which will be the subject of a future publication.
9. Conclusion

The combination of a quad/octree discretisation, an approximate projection method, a multigrid Poisson

solver and a volume-of-fluid embedded description of solid boundaries proves to be a feasible and efficient
technique for the numerical solution of the time-dependent incompressible Euler equations. This approach

differs from the classical Cartesian AMR technique [7,9,12] by treating the connection between levels of

refinement at the cell operator level rather than through boundary conditions between refined patches.

These operators can be designed to be spatially second-order accurate and to use consistent (conservative)

flux estimations at coarse/fine boundaries. This fine-grained description allows almost full flexibility in the

placement and shape of refined regions. Moreover, the refinement and coarsening process is naturally



S. Popinet / Journal of Computational Physics 190 (2003) 572–600 599
implemented by the quad/octree structure and does not need specialised algorithms for grid generation [44].

The mesh adaptation can thus be performed for every timestep with minimum overhead.

The price to pay for this flexibility is the loss of the array-based, cache- and access-efficient structured

grids which are at the core of the Cartesian AMR technique. While more thorough investigation would be

necessary, we show that similar performances to AMR can be achieved using our quad/octree approach.

Moreover, we believe that in the case of small and complicated structures (such as interfaces between fluids

or shocks) the flexibility of this approach can more than compensate for this overhead (given that a

Cartesian AMR technique would require a large number of refined patches to cover the small structures,
leading to substantial overheads in boundary conditions and most probably to the loss of cache-efficiency).

Future developments include extension to the incompressible variable-density Navier–Stokes equations

and interfacial flows, using VOF [45] and marker techniques [46]. Using sub-cycling in time on different

levels of refinement [43] would also be a useful extension of the algorithm presented.

Finally, by providing an open source version of the code which can be freely redistributed and modified

[25], we hope to encourage research and collaboration in this field.
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